
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Efficient Computation of Minimal Wind-Power Deviations That Induce Temporal Line Overloading

The paper develops an optimization method for assessing transmission network vulnerability to small changes in generation (as caused, for example, by wind forecast inaccuracy). The method computes the smallest deviation (in a weighted 2-norm sense) from the nominal generation pattern that would drive a particular line to a specified temperature, over a given time horizon. The 2-norm weighting matrix provides a means of capturing spatial and temporal coupling between generation sites and time intervals. The temperature constraint is second-order in voltage angle differences. The problem is therefore a quadratically-constrained quadratic program (QCQP). Solving the QCQP for each line in the network yields a set of candidate generation deviation patterns which may then be sorted to determine the lines that are most vulnerable to overloading. The paper develops a computationally efficient algorithm for solving this QCQP. An example explores line-overload vulnerability due to changes in wind patterns. Numerical results emphasize the framework's ability to incorporate evolving ambient and system conditions, as well as computational scaling properties.
- University of Michigan–Flint United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
