Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Systems
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VBN
Article . 2024
Data sources: VBN
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Physics-Informed Graphical Learning and Bayesian Averaging for Robust Distribution State Estimation

Authors: Di Cao; Junbo Zhao; Weihao Hu; Nanpeng Yu; Jiaxiang Hu; Zhe Chen;

Physics-Informed Graphical Learning and Bayesian Averaging for Robust Distribution State Estimation

Abstract

This article proposes a robust topology change-aware distribution system state estimation (DSSE) method based on a physics-informed graph neural network and Bayesian Probability Weighted Averaging (BPWA). A general state estimator is first built utilizing a graph attention network to learn the nonlinear mapping functions under different distribution network topologies. During this stage, the topology information is embedded in the neural network and the attention mechanism is employed to capture collaborative signals and discriminate the importance of neighboring buses. Then, the BPWA method allows assigning proper weights for the state estimation results under different topologies, which finally yields a single consensus solution via the sparse training samples under the new topology. The physics-informed mechanism enables the proposed method to embed the topology knowledge in the neural network while fully exploiting the value of historical data. Robustness to anomalous measurements is achieved through the embedding of physics knowledge. The application of the BPWA method further allows the proposed method to achieve faster adaptation to topology change and quantification of the estimation uncertainties by measurement errors. MATLAB and Python are used to carry out the comparative tests to evaluate the performance of the proposed method.

Country
Denmark
Keywords

topology change, Network topology, Learning systems, physics-informed learning, Distribution networks, Loss measurement, Anomalous measurements, Measurement uncertainty, distribution system state estimation, Topology, State estimation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%
Related to Research communities
Energy Research