
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Spatio-Temporal Deep Learning-Assisted Reduced Security-Constrained Unit Commitment

Security-constrained unit commitment (SCUC) is a computationally complex process utilized in power system day-ahead scheduling and market clearing. SCUC is run daily and requires state-of-the-art algorithms to speed up the process. The constraints and data associated with SCUC are both geographically and temporally correlated to ensure the reliability of the solution, which further increases the complexity. In this paper, an advanced machine learning (ML) model is used to study the patterns in power system historical data, which inherently considers both spatial and temporal (ST) correlations in constraints. The ST-correlated ML model is trained to understand spatial correlation by considering graph neural networks (GNN) whereas temporal sequences are studied using long short-term memory (LSTM) networks. The proposed approach is validated on several test systems namely, IEEE 24-Bus system, IEEE-73 Bus system, IEEE 118-Bus system, and synthetic South-Carolina (SC) 500-Bus system. Moreover, B-θ and power transfer distribution factor (PTDF) based SCUC formulations were considered in this research. Simulation results demonstrate that the ST approach can effectively predict generator commitment schedule and classify critical and non-critical lines in the system which are utilized for model reduction of SCUC to obtain computational enhancement without loss in solution quality
8 Figures, 5 Tables, 1 Algorithm
- University of Houston - Victoria United States
- Constant
- Constant Belgium
- ConStat Denmark
- University of Houston - Victoria United States
FOS: Computer and information sciences, Computer Science - Machine Learning, Optimization and Control (math.OC), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Mathematics - Optimization and Control, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Optimization and Control (math.OC), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Mathematics - Optimization and Control, Machine Learning (cs.LG)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
