
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Unit Commitment Predictor With a Performance Guarantee: A Support Vector Machine Classifier

Unit Commitment Predictor With a Performance Guarantee: A Support Vector Machine Classifier
The system operators usually need to solve large-scale unit commitment problems within limited time frame for computation. This paper provides a pragmatic solution, showing how by learning and predicting the on/off commitment decisions of conventional units, there is a potential for system operators to warm start their solver and speed up their computation significantly. For the prediction, we train linear and kernelized support vector machine classifiers, providing an out-of-sample performance guarantee if properly regularized, converting to distributionally robust classifiers. For the unit commitment problem, we solve a mixed-integer second-order cone problem. Our results based on the IEEE 6- and 118-bus test systems show that the kernelized SVM with proper regularization outperforms other classifiers, reducing the computational time by a factor of 1.7. In addition, if there is a tight computational limit, while the unit commitment problem without warm start is far away from the optimal solution, its warmly-started version can be solved to (near) optimality within the time limit.
- Technical University of Denmark Denmark
Gaussian kernel function, FOS: Computer and information sciences, Computer Science - Machine Learning, Support vector machine, Warm start, Conic programming, Statistics - Applications, Unit commitment, Machine Learning (cs.LG), Optimization and Control (math.OC), FOS: Mathematics, Applications (stat.AP), Mathematics - Optimization and Control
Gaussian kernel function, FOS: Computer and information sciences, Computer Science - Machine Learning, Support vector machine, Warm start, Conic programming, Statistics - Applications, Unit commitment, Machine Learning (cs.LG), Optimization and Control (math.OC), FOS: Mathematics, Applications (stat.AP), Mathematics - Optimization and Control
1 Research products, page 1 of 1
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
