Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Systems
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Long-Term Carbon-Efficient Planning for Geographically Shiftable Resources: A Monte Carlo Tree Search Approach

Authors: Xuan He; Danny H.K. Tsang; Yize Chen;

Long-Term Carbon-Efficient Planning for Geographically Shiftable Resources: A Monte Carlo Tree Search Approach

Abstract

Global climate challenge is demanding urgent actions for decarbonization, while electric power systems take the major roles in clean energy transition. Due to the existence of spatially and temporally dispersed renewable energy resources and the uneven distribution of carbon emission intensity throughout the grid, it is worth investigating future load planning and demand management to offset those generations with higher carbon emission rates. Such techniques include inter-region utilization of geographically shiftable resources and stochastic renewable energy. For instance, data center is considered to be a major carbon emission producer in the future due to increasing information load, while it holds the capability of geographical load balancing. In this paper, we propose a novel planning and operation model minimizing the system-level carbon emissions via sitting and operating geographically shiftable resources. This model decides the optimal locations for shiftable resources expansion along with power dispatch schedule. To accommodate future system operation patterns and a wide range of operating conditions, we incorporate 20-year fine-grained load and renewables scenarios for grid simulations of realistic sizes (e.g., up to 1888 buses). To tackle the computational challenges coming from the combinatorial nature of such large-scale planning problem, we develop a customized Monte Carlo Tree Search (MCTS) method, which can find reasonable solutions satisfying solution time limits. Besides, MCTS enables flexible time window settings and offline solution adjustments. Extensive simulations validate that our planning model can reduce more than 10\% carbon emission across all setups. Compared to off-the-shelf optimization solvers such as Gurobi, our method achieves up to 8.1X acceleration while the solution gaps are less than 1.5\% in large-scale cases.

Accepted at IEEE Transactions on Power Systems

Country
China (People's Republic of)
Keywords

Load modeling, 330, Carbon emission, Systems and Control (eess.SY), Fuels, Electrical Engineering and Systems Science - Systems and Control, Renewable energy sources, 004, Load shifting, Planning, Carbon dioxide, Monte Carlo tree search, FOS: Electrical engineering, electronic engineering, information engineering, Data centers, Investment, Mixed integer problem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green