Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Bath's...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Systems
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interpretable Deep Reinforcement Learning With Imitative Expert Experience for Smart Charging of Electric Vehicles

Authors: Shuangqi Li; Alexis Pengfei Zhao; Chenghong Gu; Siqi Bu; Edward Chung; Zhongbei Tian; Jianwei Li; +1 Authors

Interpretable Deep Reinforcement Learning With Imitative Expert Experience for Smart Charging of Electric Vehicles

Abstract

Deep reinforcement learning (DRL) is a promising candidate for realizing online complex system optimal control because of its high computation efficiency. However, the interpretability and reliability problems limit its engineering application in smart grid energy management. This paper for the first time designs a novel imitative learning framework to provide a reliable solution for computation-efficient grid-connected electric vehicles (GEVs) charging management in smart grids. The optimal strategies are derived by a priors optimization model based on vehicle-to-grid (V2G) cost-benefit analysis. With better interpretability and ensured optimality, the derived strategies are used to construct an experience pool for configuring the learning environment. Then, a novel imitative learning mechanism is designed to facilitate the knowledge transfer between expert experience and reinforcement learning model. Further, a novel dual actor-imitator learning network to enable flexible scheduling of V2G power of GEVs. With the dual network structure, the expert experience can be effectively utilized to enhance the training efficiency and performance of the DRL-based V2G coordinator. The effectiveness of the developed method in improving V2G benefit and mitigating battery aging is validated on a demonstrative microgrid in the UK.

Country
United Kingdom
Related Organizations
Keywords

Aging, smart charging, cost-benefit analysis, Imitation learning, Vehicle-to-grid, Electric vehicle, renewable energy, Renewable energy sources, /dk/atira/pure/subjectarea/asjc/2200/2208; name=Electrical and Electronic Engineering, Batteries, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy; name=SDG 7 - Affordable and Clean Energy, Reinforcement learning, Training, battery aging, vehicle grid integration, /dk/atira/pure/subjectarea/asjc/2100/2102; name=Energy Engineering and Power Technology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green