
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Flexibility of Integrated Power and Gas Systems: Gas Flow Modeling and Solution Choices Matter

Due to their slow gas flow dynamics, natural gas pipelines function as short-term storage, the so-called linepack. By efficiently utilizing linepack, the natural gas system can provide flexibility to the power system through the flexible operation of gas-fired power plants. This requires accurately representing the gas flow physics governed by partial differential equations. Although several modeling and solution choices have been proposed in the literature, their impact on the flexibility provision of gas networks to power systems has not been thoroughly analyzed and compared. This paper bridges this gap by first developing a unified framework. We harmonize existing approaches and demonstrate their derivation from and application to the partial differential equations. Secondly, based on the proposed framework, we numerically analyze the implications of various modeling and solution choices on the flexibility provision from gas networks to power systems. One key conclusion is that relaxation-based approaches allow charging and discharging the linepack at physically infeasible high rates, ultimately overestimating the flexibility.
Optimization and Control (math.OC), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Mathematics - Optimization and Control
Optimization and Control (math.OC), FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Mathematics - Optimization and Control
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
