
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Matching EV Charging Load With Uncertain Wind: A Simulation-Based Policy Improvement Approach

This paper studies the electric vehicle (EV) charging scheduling problem to match the stochastic wind power. Besides considering the optimality of the expected charging cost, the proposed model innovatively incorporates the matching degree between wind power and EV charging load into the objective function. Fully taking into account the uncertainty and dynamics in wind energy supply and EV charging demand, this stochastic and multistage matching is formulated as a Markov decision process. In order to enhance the computational efficiency, the effort is made in two aspects. Firstly, the problem size is reduced by aggregating EVs according to their remaining parking time. The charging scheduling is carried out on the level of aggregators and the optimality of the original problem is proved to be preserved. Secondly, the simulation-based policy improvement method is developed to obtain an improved charging policy from the base policy. The validation of the proposed model, scalability, and computational efficiency of the proposed methods are systematically investigated via numerical experiments.
- Xi’an Jiaotong-Liverpool University China (People's Republic of)
- Tsinghua University China (People's Republic of)
- Central South University China (People's Republic of)
- Katholieke Universiteit Leuven Belgium
- Central South University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).118 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
