Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Smart Grid
Article . 2017 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

WAMS Cyber-Physical Test Bed for Power System, Cybersecurity Study, and Data Mining

Authors: Uttam Adhikari; Thomas Morris; Shengyi Pan;

WAMS Cyber-Physical Test Bed for Power System, Cybersecurity Study, and Data Mining

Abstract

Researchers from various cross disciplinary fields such as power systems, data science, and cybersecurity face two distinct challenges. First, the lack of a comprehensive test bed that integrates industry standard hardware, software, and wide area measurement system (WAMS) components and protocols impedes the study of cybersecurity issues including vulnerabilities associated with WAMS components and the consequences of exploitation of vulnerabilities. Second, a lack of comprehensive labeled Synchrophasor data along with other system related information imposes challenges to the development and evaluation of data mining algorithms that can classify power system cyber-power events. In this paper, a WAMS cyber-physical test bed was developed using a real time digital simulator with hardware-in-the-loop simulation. Commercial control and monitoring devices, hardware, software, and industry standard communication networks and protocols were combined with custom MATLAB, Python, and AutoIt scripts to model realistic power system contingencies and cyber-attacks. An automated simulation and control engine was developed to randomize modeled cyber-power events including power system faults, contingencies, control actions, and cyber-attacks. Scripts were added to capture heterogenous sensor data and create ground truth labeled datasets. The WAMS cyber-physical test bed is capable of simulating various sized power systems and creating datasets without altering the hardware configuration. A WAMS architecture is presented to document the integration of various components. Finally, test bed applications, simulated cyber-power scenarios, the dataset development process, and selected results are presented.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    82
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
82
Top 1%
Top 10%
Top 1%