
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Robust Forecasting Aided Power System State Estimation Considering State Correlations

Robust Forecasting Aided Power System State Estimation Considering State Correlations
With the increase of load fluctuations and the integration of stochastic distributed generations (DGs), there have been more and more research interests in forecasting-aided state estimation. In this paper, we propose a robust generalized maximum likelihood (GM)-estimator based power system forecasting-aided state estimation, which integrates the statistical characteristics of both loads and DGs, i.e., spatial and temporal correlations. A first order vector auto-regressive model (VAR(1)) is developed to capture the statistical characteristics of load and DGs, facilitating short-term loads and DGs forecasting. These forecasted power injections are further combined with power balance equations to derive a new state transition model, where the relationship between forecasted state vector and predicted power injections is expressed explicitly. After that, a redundant batch regression model that simultaneously processes predicted state vector and received observations is derived, allowing the development of a robust estimator. To this end, we propose a robust GM-estimator that leverages modified projection statistics and a Huber convex score function, to bound the influence of observation outliers while maintaining its high statistical estimation efficiency. Finally, the iteratively reweighted least squares algorithm is adopted to solve the GM-estimator. Numerical comparisons on IEEE benchmark systems with DGs integration demonstrate the efficiency and robustness of the proposed method.
- Instituto Politécnico Nacional Mexico
- University of Sydney Australia
- Southeast University China (People's Republic of)
- Southeast University China (People's Republic of)
- Southwest Jiaotong University China (People's Republic of)
4 Research products, page 1 of 1
- 2009IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).60 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
