
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
New Problem Formulation for Optimal Demand Side Response in Hybrid AC/DC Systems

This paper proposes a new problem formulation to simplify the mathematical representation for a hybrid ac/dc domestic energy system. Instead of building the formulation from a component level, the new formulation is built at the whole system level such that all power transfers between ac/dc or dc/ac are reflected in the ac power drawn from the main grid. This is achieved by assigning the ac power drawn from the grid as a piecewise function of local dc power, each slope in the function represents the conversion efficiency, making it flexible to consider a wide range of conversion efficiencies for different system components. The new formulation substantially reduces the number of variables/constraints, improves efficiency modelling accuracy and increases the search efficacy. The piecewise functions are directly solved by a mixed integer linear programming (MILP). The performance of the proposed formulation is illustrated by the hybrid ac/dc energy systems at a primary school in the U.K. The results show that the proposed problem formulation and the MILP solution method provide an effective optimal control strategy for a mixed ac/dc domestic energy system in the presence of variable tariffs and differing conversion efficiency, achieved a cost saving of 24% increase in energy bills compared with the traditional approach.
- Zhejiang Ocean University China (People's Republic of)
- Zhejiang Ocean University China (People's Republic of)
- Bath Spa University United Kingdom
- Indian Institute of Technology Roorkee India
- University of Bath United Kingdom
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
