Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Smart Grid
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

New Problem Formulation for Optimal Demand Side Response in Hybrid AC/DC Systems

Authors: Chen Zhao; Shufeng Dong; Chenghong Gu; Furong Li; Yonghua Song; Narayana Prasad Padhy;

New Problem Formulation for Optimal Demand Side Response in Hybrid AC/DC Systems

Abstract

This paper proposes a new problem formulation to simplify the mathematical representation for a hybrid ac/dc domestic energy system. Instead of building the formulation from a component level, the new formulation is built at the whole system level such that all power transfers between ac/dc or dc/ac are reflected in the ac power drawn from the main grid. This is achieved by assigning the ac power drawn from the grid as a piecewise function of local dc power, each slope in the function represents the conversion efficiency, making it flexible to consider a wide range of conversion efficiencies for different system components. The new formulation substantially reduces the number of variables/constraints, improves efficiency modelling accuracy and increases the search efficacy. The piecewise functions are directly solved by a mixed integer linear programming (MILP). The performance of the proposed formulation is illustrated by the hybrid ac/dc energy systems at a primary school in the U.K. The results show that the proposed problem formulation and the MILP solution method provide an effective optimal control strategy for a mixed ac/dc domestic energy system in the presence of variable tariffs and differing conversion efficiency, achieved a cost saving of 24% increase in energy bills compared with the traditional approach.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%