Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Smart Grid
Article . 2016 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computing Safety Margins of Generation Rejection Scheme: A Framework for Online Implementation

Authors: Daham Min; Seog Joo Kim; Sangsoo Seo; Young Hwan Moon; Kai Sun; Joe Chow; Kyeon Hur;

Computing Safety Margins of Generation Rejection Scheme: A Framework for Online Implementation

Abstract

This paper develops an analytical method for assessing the safety margins of a generation rejection scheme (GRS) reliably. It also presents a practical framework for implementing the proposed method integrated with energy management system and synchrophasor data in power grid operations. By employing a concept of virtual load connected to the critical generation bus of the single machine equivalent of the real-time operations case, we calculate, similar to transfer analysis, the allowable power to the virtual load in MW after tripping the pre-planned number of generation units and thus determine the required rejected power for the GRS initiating scenario. This virtual loading can be interpreted as the safety margin of the designed GRS to ensure its stabilizing operation. This research further develops a computationally efficient technique for refining the safety margin potentially with the measured synchrophasor data to improve the robustness of the GRS in practice. Understanding the safety margin is envisioned to help investigate and identify other practical options than tripping generators for protecting the system integrity. Accuracy and efficacy are demonstrated for real Korea power system cases.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Average