
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Cooperative MPC-Based Energy Management for Networked Microgrids

Microgrids are subsystems of the distribution grid operating as a single controllable system either connected or isolated from the grid. In this paper, a novel cooperative Model Predictive Control (MPC) framework is proposed for urban districts comprising multiple microgrids sharing certain Distributed Energy Resources (DERs). The operation of the microgrids, along with the shared DER, are coordinated such that the available flexibility sources are optimised and a common goal is achieved, e.g., minimizing energy exchanged with the distribution grid and the overall energy costs. Each microgrid is equipped with an MPC-based Energy Management System (EMS), responsible for optimally controlling flexible loads, heating systems and local generation devices based on end-user preferences, weather-dependent generation and demand forecasts, energy prices, technical and operational constraints. The proposed coordination algorithm is distributed and guarantees constraints satisfaction, cooperation among microgrids and fairness in the use of the shared resources, while addressing the issue of scalability of energy management in an urban district. Furthermore, the proposed framework guarantees an agreed cost saving to each microgrid. The described method is implemented and evaluated in a virtual testing environment that integrates accurate simulators of the microgrids. Numerical experiments show the feasibility, the computational benefits and the effectiveness of the proposed approach.
- VTT Technical Research Centre of Finland Finland
- Royal Institute of Technology Sweden
- VTT Technical Research Centre of Finland Finland
- University of Salford United Kingdom
- Technical University of Berlin Germany
ta113, flexibility services, ta213, energy management, energy storage, microgrids, load modeling, cogeneration, Energy management systems, demand response, Mixed integer linear programming, heat pumps, Model predictive control, distributed optimization, resistance heating
ta113, flexibility services, ta213, energy management, energy storage, microgrids, load modeling, cogeneration, Energy management systems, demand response, Mixed integer linear programming, heat pumps, Model predictive control, distributed optimization, resistance heating
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).187 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
