Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UNSWorksarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Smart Grid
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Real-Time Assessment of Fault-Induced Delayed Voltage Recovery: A Probabilistic Self-Adaptive Data-Driven Method

Authors: Yuchen Zhang; Yan Xu; Zhao Yang Dong; Pei Zhang;

Real-Time Assessment of Fault-Induced Delayed Voltage Recovery: A Probabilistic Self-Adaptive Data-Driven Method

Abstract

Fault-induced delayed voltage recovery (FIDVR) events have become a critical threat to modern power systems with high-level inverter-interfaced renewable power generation. Aiming at the real-time assessment on FIDVR, this paper proposes a data-driven method using real-time bus voltage trajectory measurements. Based on ensemble learning and probabilistic prediction techniques, a self-adaptive decision-making model is developed to rapidly predict the FIDVR severity index following a disturbance in the system. The salient feature of the proposed method is that the FIDVR assessment result can be delivered as early as possible without impairing the assessment accuracy, thereby more time is available for emergency controls. The proposed method is tested on New England 39-bus system, and the results demonstrate its high accuracy and exceptionally faster speed over existing methods.

Countries
Singapore, Australia
Related Organizations
Keywords

anzsrc-for: 4009 Electronics, anzsrc-for: 4606 Distributed computing and systems software, Data-analytics, anzsrc-for: 40 Engineering, probabilistic prediction, fault-induced delayed voltage recovery, anzsrc-for: 4008 Electrical Engineering, anzsrc-for: 0906 Electrical and Electronic Engineering, 40 Engineering, Ensemble Learning, 13 Climate Action, Engineering::Electrical and electronic engineering, 004, 620, 4009 Electronics, anzsrc-for: 0915 Interdisciplinary Engineering, :Electrical and electronic engineering [Engineering], ensemble learning, 7 Affordable and Clean Energy, 4008 Electrical Engineering, Sensors and Digital Hardware, random vector functional link

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%
Green