
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Distributed Strategy for Optimal Dispatch of Unbalanced Three-Phase Islanded Microgrids

This paper presents a distributed strategy for the optimal dispatch of islanded microgrids, modeled as unbalanced three-phase electrical distribution systems. To set the dispatch of the distributed generation (DG) units, an optimal generation problem is stated and solved distributively based on primal-dual constrained decomposition and a first-order consensus protocol, where units can communicate only with their neighbors. Thus, convergence is guaranteed under the common convexity assumptions. The islanded microgrid operates with the standard hierarchical control scheme, where two control modes are considered for the DG units: a voltage control mode, with an active droop control loop, and a power control mode, which allows setting the output power in advance. To assess the effectiveness and flexibility of the proposed approach, simulations were performed in a 25-bus unbalanced three-phase microgrid. According to the obtained results, the proposed strategy achieves a lower cost solution when compared with a centralized approach based on a static droop framework, with a considerable reduction on the communication system complexity. Additionally, it corrects the mismatch between generation and consumption even during the execution of the optimization process, responding to changes in the load consumption, renewable generation, and unexpected faults in units.
- University of Southern Denmark Denmark
- Aalborg University Library (AUB) Denmark
- Aalborg University Denmark
- Industrial University of Santander Colombia
- Technical University Eindhoven Netherlands
distributed dispatch, Distributed dispatch, Three-phase microgrid, Nonlinear programming, three-phase microgrid, nonlinear programming, SDG 7 - Affordable and Clean Energy, optimal power flow, Consensus algorithm, SDG 7 – Betaalbare en schone energie, Optimal power flow, Computer Science(all)
distributed dispatch, Distributed dispatch, Three-phase microgrid, Nonlinear programming, three-phase microgrid, nonlinear programming, SDG 7 - Affordable and Clean Energy, optimal power flow, Consensus algorithm, SDG 7 – Betaalbare en schone energie, Optimal power flow, Computer Science(all)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).40 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
