
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Operational Reliability Assessment for Gas-Electric Integrated Distribution Feeders

Reliability enhancement is a major motivation for integrating electric and gas energy distribution systems. Compared with reliability assessment at the stage of planning, which emphasizes calculating the system annual average indices, the coupling of gas and electric energy flows contributes more to the operational reliability of the integrated system, especially during peak-load periods. In this paper, a method is proposed that assesses system outage risk in each time period by modeling the consequence of the worst N-1 fault in the integrated electric-gas system. In order to accurately model the load transfer process, a novel dynamic load restoration model is applied to minimize load loss of the system, where the fluctuation of multiple energy flows during fault clearing periods is considered. The effectiveness of the proposed approach is validated by performing case studies.
- Sichuan University China (People's Republic of)
- University of Wisconsin–Oshkosh United States
- Sichuan University China (People's Republic of)
- University of Wisconsin–Milwaukee United States
- University of Wisconsin–Oshkosh United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).44 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
