Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Smart Grid
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal Multi-Scenario, Multi-Objective Allocation of Fault Indicators in Electrical Distribution Systems Using a Mixed-Integer Linear Programming Model

Authors: Jhair S. Acosta; Juan Camilo Lopez; Marcos J. Rider;

Optimal Multi-Scenario, Multi-Objective Allocation of Fault Indicators in Electrical Distribution Systems Using a Mixed-Integer Linear Programming Model

Abstract

In this paper, a mixed-integer nonlinear programming (MINLP) model for the optimal multiscenario allocation of fault indicators (FIs) in electrical distribution systems (EDS) is presented. The original MINLP model is linearized to obtain an equivalent mixed-integer linear programming (MILP) model. The proposed MILP formulation is a precise, flexible, and scalable optimization model whose optimal solution is guaranteed by commercial solvers. In order to improve the practicality and scope of the proposed method, different demand levels, topologies, and ${N-1}$ contingencies are included as scenarios within the proposed model. The flexibility of the model is also emphasized by adding a custom noncontinuous interruption cost function. The objective function minimizes the average cost of energy not supplied and the present value of the overall investments made over a discrete planning horizon. Since the proposed model is convex, other conflicting objectives can be considered using a simple step-by-step approach to construct the optimal Pareto front. In order to demonstrate the efficiency and scalability of the proposed method, two different EDS are tested: a 69-node RBTS4 benchmark and a real Brazilian distribution system. Results show the efficiency of the proposed method to improve the overall reliability of the system even when few FIs are installed.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Top 10%
Top 10%