Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Smart Grid
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep Learning-Based Time-Varying Parameter Identification for System-Wide Load Modeling

Authors: Mingjian Cui; Mahdi Khodayar; Chen Chen; Xinan Wang; Ying Zhang; Mohammad E. Khodayar;

Deep Learning-Based Time-Varying Parameter Identification for System-Wide Load Modeling

Abstract

The integration of uncertain power resources is causing more challenges for traditional load modeling research. Parameter identification of load modeling is impacted by a variety of load components with time-varying characteristics. This paper develops a deep learning-based time-varying parameter identification model for composite load modeling (CLM) with ZIP load and induction motor. A multi-modal long short-term memory (M-LSTM) deep learning method is used to estimate all the time-varying parameters of CLM considering system-wide measurements. It contains a multi-modal structure that makes use of different modalities of the input data to accurately estimate time-varying load parameters. An LSTM network with a flexible number of temporal states is defined to capture powerful temporal patterns from the load parameters and measurements time series. The extracted features are further fed to a shared representation layer to capture the joint representation of input time series data. This temporal representation is used in a linear regression model to estimate time-varying load parameters at the current time. Numerical simulations on the 23- and 68-bus systems verify the effectiveness and robustness of the proposed M-LSTM method. Also, the optimal lag values of parameters and measurements as input variables are solved.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 1%
Top 10%
Top 1%