
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Deep Learning-Based Time-Varying Parameter Identification for System-Wide Load Modeling
The integration of uncertain power resources is causing more challenges for traditional load modeling research. Parameter identification of load modeling is impacted by a variety of load components with time-varying characteristics. This paper develops a deep learning-based time-varying parameter identification model for composite load modeling (CLM) with ZIP load and induction motor. A multi-modal long short-term memory (M-LSTM) deep learning method is used to estimate all the time-varying parameters of CLM considering system-wide measurements. It contains a multi-modal structure that makes use of different modalities of the input data to accurately estimate time-varying load parameters. An LSTM network with a flexible number of temporal states is defined to capture powerful temporal patterns from the load parameters and measurements time series. The extracted features are further fed to a shared representation layer to capture the joint representation of input time series data. This temporal representation is used in a linear regression model to estimate time-varying load parameters at the current time. Numerical simulations on the 23- and 68-bus systems verify the effectiveness and robustness of the proposed M-LSTM method. Also, the optimal lag values of parameters and measurements as input variables are solved.
- Argonne National Laboratory United States
- Southern Methodist University United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).73 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
