Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Smart Grid
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Physical Probabilistic Network Model for Distribution Network Topology Recognition Using Smart Meter Data

Authors: Wei Jiang; Jinming Chen; Haibo Tang; Shu Cheng; Qinran Hu; Mengmeng Cai; Saifur Rahman;

A Physical Probabilistic Network Model for Distribution Network Topology Recognition Using Smart Meter Data

Abstract

Given the considerable scale of distribution networks in urban and rural areas, as well as the lack of management records, adjustments of switches during the distribution system operation are poorly documented. Such deficiency results in the inaccuracy of models stored in the distribution network automation system, and thus misleads the state estimation. With the emergence of information and communication technology, a large number of the feeder and residential smart meter data are accumulated. Such data can help recognize the operation modes of distribution networks by analyzing the relationships between the on/off states of switches and the voltage correlations among buses. However, the limited quantity and quality of the sampling data restrict the implementation of data-driven recognition. In this paper, a physical-probabilistic-network (PPN) model applied for inferring overall operation mode of distribution networks is proposed. Based on which, a belief propagation-based algorithm is proposed for the inference even under situations when there are only partial bus voltages data available. Meanwhile, the required variable for inference can be reduced from the active trail analysis. Experiment results are used to compare its performance with classic methods and to prove its effectiveness and advantages.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%