
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Reinforced Deterministic and Probabilistic Load Forecasting via $Q$ -Learning Dynamic Model Selection

Both deterministic and probabilistic load forecasting (DLF and PLF) are of critical importance to reliable and economical power system operations. However, most of the widely used statistical machine learning (ML) models are trained by optimizing the global performance, without considering the local behaviour. This paper develops a two-step short-term load forecasting (STLF) model with Q-learning based dynamic model selection (QMS), which provides reinforced deterministic and probabilistic load forecasts (DLFs and PLFs). First, a deterministic forecasting model pool (DMP) and a probabilistic forecasting model pool (PMP) are built based on 10 state-of-the-art ML DLF models and 4 predictive distribution models. Then, in the first-step of each time stamp, a Q-learning agent selects the locally-best DLF model from the DMP to provide an enhanced DLF. At last, the DLF is input to the best PLF model selected from the PMP by another Q-learning agent to perform PLF in the second-step. Numerical simulations on two-year weather and smart meter data show that the developed STLF-QMS method improves DLF and PLF by 50% and 60%, respectively, compared to the state-of-the-art benchmarks.
- The University of Texas at Dallas United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).98 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
