
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Decentralized AC Optimal Power Flow for Integrated Transmission and Distribution Grids

The coordinated solution of AC optimal power flow (ACOPF) in the integrated transmission and distribution grid utilizes controllable energy resources in distribution grids for introducing additional operational economy and security benefits of power grids. However, it is rather impractical to compute the ACOPF centrally considering the information privacy in the operation of transmission and distribution grids. Due to the large capacity of distributed generators integrated to distribution grids, existing decentralized methods may encounter numerical problems and fail to converge when nonlinear ACOPF models are applied. In this paper, we propose a decentralized method to solve the ACOPF for integrated transmission and distribution grids. The proposed ACOPF model is characterized through polar-coordinate equations and branch flow equations for transmission grids and distribution grids respectively. A distribution-cost-correction framework is developed for a fast-convergent solution which is based on approximated distribution cost functions. A rigorous proof is provided for convergence and numerical simulations are analyzed for standard IEEE systems which demonstrate the advantages of the coordinated approach in reducing generation dispatch costs and mitigating overvoltage problems. The paper validates through simulations that the accuracy, computational efficiency, and scalability of the proposed approach are superior to those of traditional methods.
- Tsinghua University China (People's Republic of)
- Illinois Institute of Technology United States
- Illinois Institute of Technology United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).50 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
