Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Smart Grid
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Data-Driven Approach to Linearize Power Flow Equations Considering Measurement Noise

Authors: Yuxiao Liu; Yi Wang; Ning Zhang; Dan Lu; Chongqing Kang;

A Data-Driven Approach to Linearize Power Flow Equations Considering Measurement Noise

Abstract

The nonlinearity of power flow (PF) equations challenges the analysis and optimization of power systems. Both model-based and data-driven approach was recently applied to linearize the PF equations. The data-driven approach relies heavily on the quality of the measurement data, where measurement noise may cause large modeling errors. This paper tackles the challenges of the hidden measurement noise in the data-driven PF linearization problem. We transform the problem into a regression model where the structure of the AC power flow equations is exploited. Jacobian matrix guided constraints are added to shrink the search space greatly. This regression model is formulated as three linearly constrained quadratic programming problems and is solved in an iterative manner. The effectiveness of the proposed approach is demonstrated through case studies on several IEEE standard test systems and a practical provincial system.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback