
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Global Sensitivity Analysis in Load Modeling via Low-Rank Tensor
Growing model complexities in load modeling have created high dimensionality in parameter estimations, and thereby substantially increasing associated computational costs. In this paper, a tensor-based method is proposed for identifying composite load modeling (CLM) parameters and for conducting a global sensitivity analysis. Tensor format and Fokker-Planck equations are used to estimate the power output response of CLM in the context of simultaneously varying parameters under their full parameter distribution ranges. The proposed tensor structured is shown as effective for tackling high-dimensional parameter estimation and for improving computational performances in load modeling through global sensitivity analysis.
Submitted to IEEE Power Engineering Letters
- Southern Methodist University United States
- Methodist University United States
Optimization and Control (math.OC), FOS: Mathematics, FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Mathematics - Optimization and Control, Electrical Engineering and Systems Science - Systems and Control
Optimization and Control (math.OC), FOS: Mathematics, FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Mathematics - Optimization and Control, Electrical Engineering and Systems Science - Systems and Control
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
