
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Mobility-Aware Charging Scheduling for Shared On-Demand Electric Vehicle Fleet Using Deep Reinforcement Learning

With the emerging concept of sharing-economy, shared electric vehicles (EVs) are playing a more and more important role in future mobility-on-demand traffic system. This article considers joint charging scheduling, order dispatching, and vehicle rebalancing for large-scale shared EV fleet operator. To maximize the welfare of fleet operator, we model the joint decision making as a partially observable Markov decision process (POMDP) and apply deep reinforcement learning (DRL) combined with binary linear programming (BLP) to develop a near-optimal solution. The neural network is used to evaluate the state value of EVs at different times, locations, and states of charge. Based on the state value, dynamic electricity prices and order information, the online scheduling is modeled as a BLP problem where the decision variables representing whether an EV will 1) take an order, 2) rebalance to a position, or 3) charge. We also propose a constrained rebalancing method to improve the exploration efficiency of training. Moreover, we provide a tabular method with proved convergence as a fallback option to demonstrate the near-optimal characteristics of the proposed approach. Simulation experiments with real-world data from Haikou City verify the effectiveness of the proposed method.
- North China Electric Power University China (People's Republic of)
- North China Electric Power University China (People's Republic of)
- Xi'an Jiaotong University China (People's Republic of)
- The University of Texas at Arlington United States
- The University of Texas at Arlington United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).91 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
