Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Smart Grid
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Fault Location Methodology for Smart Distribution Networks

Authors: Hamid Mirshekali; Rahman Dashti; Ahmad Keshavarz; Amin J. Torabi; Hamid Reza Shaker;

A Novel Fault Location Methodology for Smart Distribution Networks

Abstract

Power distribution networks (PDNs) has played a crucial role in expediting transition towards cleaner and better distributed energy sources. Nowadays, more and more distributed generations (DGs) are used in PDNs which complicates the automatic fault location. This article presents an accurate impedance-based method to determine the fault location for smart PDN in the presence of DGs. In addition, phase domain equations of distributed line parameters are used to enhance the accuracy of fault location. Two types of networks are considered. The first type of network is assumed to be fully observable with $\mu PMU$ and in the second type there are only a few $\mu PMU\text{s}$ with data loggers on the rest nodes. Load impedances of all nodes are estimated using pre-fault recorded information by present $\mu PMU\text{s}$ and data loggers. The proposed algorithm might suggest several points as possible fault locations for a PDN. To find out the actual location of fault same fault type is simulated for all suggested points. A matching value which is mathematically defined in the article, is calculated using recorded and simulated voltage to determine the actual fault point among all the suggested candidates. The accuracy of suggested method is analyzed against various conditions.

Country
Denmark
Related Organizations
Keywords

distributed generation, section estimation, Smart distribution network, load estimation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 1%
Top 10%
Top 1%