
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Linear Branch Flow Model for Radial Distribution Networks and Its Application to Reactive Power Optimization and Network Reconfiguration

arXiv: 2007.02074
A Linear Branch Flow Model for Radial Distribution Networks and Its Application to Reactive Power Optimization and Network Reconfiguration
This paper presents a cold-start linear branch flow model named modified DistFlow. In modified DistFlow, the active and reactive power are replaced by their ratios to voltage magnitude as state variables, so that errors introduced by conventional branch flow linearization approaches due to their complete ignoring of the quadratic term are reduced. Based on the path-branch incidence matrix, branch power flows and nodal voltage magnitudes can be obtained in a non-iterative and explicit manner. Subsequently, the proposed modified DistFlow model is applied to the problem of reactive power optimization and network reconfiguration, transforming it into a mixed-integer quadratic programming (MIQP). Simulations show that the proposed modified DistFlow has a better accuracy than existing cold-start linear branch flow models for distribution networks, and the resulting MIQP model for reactive power optimization and network reconfiguration is much more computationally efficient than existing benchmarks.
- Tsinghua University China (People's Republic of)
FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control
FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control
7 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2023IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
