
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Deep Learning-Based Cyberattack Detection System for Transmission Protective Relays

The digitalization of power systems over the past decade has made the cybersecurity of substations a top priority for regulatory agencies and utilities. Proprietary communication protocols are being increasingly replaced by standardized and interoperable protocols providing utility operators with remote access and control capabilities at the expense of growing cyberattack risks. In particular, the potential of supply chain cyberattacks is on the rise in industrial control systems. In this environment, there is a pressing need for the development of cyberattack detection systems for substations and in particular protective relays, a critical component of substation operation. This paper presents a deep learning-based cyberattack detection system for transmission line protective relays. The proposed cyberattack detection system is first trained with current and voltage measurements representing various types of faults on the transmission lines. The cyberattack detection system is then employed to detect current and voltage measurements that are maliciously injected by an attacker to trigger the transmission line protective relays. The proposed cyberattack detection system is evaluated under a variety of cyberattack scenarios. The results demonstrate that a universal architecture can be designed for the deep learning-based cyberattack detection systems in substations.
- University of Leeds United Kingdom
- Ryerson University Canada
- Hydro-Québec Canada
- University of Toronto Canada
- Ryerson University Canada
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).55 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
