
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Spatio-Temporal Correlation-Based False Data Injection Attack Detection Using Deep Convolutional Neural Network

There are lots of cyber-attack, especially false data injection attacks, in modern power systems. This attack can circumvent traditional residual-based detection methods, and destroy the integrity of control information, thus hindering the stability of the power system. In this paper, a novel Spatiotemporal detection mechanism is proposed to evaluate and locate false data injection attacks. In the proposed method, temporal correlation and spatial correlation are analyzed by cubature Kalman filter and Gaussian process regression, respectively, to capture the dynamic features of state vectors. Then, a deep convolutional neural network is trained to depict the functional relationship between Spatio-temporal correlation functions and the output, which is set as the detection indicator to access whether the power system under attack or not. Furthermore, the performance of the proposed mechanism is evaluated with comprehensive numerical simulation on IEEE 39-bus test system. The results of the case studies showed that the proposed method can achieve 99.84%-100% accuracy.
- University of Electronic Science and Technology of China China (People's Republic of)
- University of Electronic Science and Technology of China China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).32 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
