Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Smart Grid
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Privacy-Preserving Federated Learning Method for Probabilistic Community-Level Behind-the-Meter Solar Generation Disaggregation

Authors: Jun Lin; Jin Ma; Jianguo Zhu;

A Privacy-Preserving Federated Learning Method for Probabilistic Community-Level Behind-the-Meter Solar Generation Disaggregation

Abstract

Accurate estimation of residential solar photovoltaic (PV) generation is crucial for the power distribution and demand response program implementation. Currently, most distributed PVs are installed behind-the-meters (BTMs), and are thus invisi-ble to the utilities. The existing methods separate the BTM solar generation from the available net load in a centralized manner as-suming that all data are accessible to utilities. However, this can cause privacy issues, since the data are owned by different utilities and they may be unwilling to share their data. To this end, a novel method is proposed for disaggregating community-level BTM so-lar generation using a federated learning-based Bayesian neural network (FL-BNN), which can preserve the privacy of utilities. Specifically, a Bayesian neural network (BNN) is designed as the probabilistic energy disaggregation model with the ability to cap-ture uncertainties. The BNN training process is extended into a decentralized manner based on the federated learning framework. To enable the model customized for each community, the layers of BNN are categorized into shallow and deep layers, and a layerwise parameter aggregation strategy is proposed to update the model. Both community-specific features and community-invariant fea-tures can be learned. The effectiveness of the proposed method is validated on a publicly available dataset.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 1%
Top 10%
Top 1%