Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
VTechWorks
Article . 2022
Data sources: VTechWorks
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Smart Grid
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VTechWorks
Other literature type . 2024
Data sources: VTechWorks
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Assessment of Multistage Reward Function Design for Deep Reinforcement Learning-Based Microgrid Energy Management

Authors: Hui Hwang Goh; Yifeng Huang; Chee Shen Lim; Dongdong Zhang; Hui Liu; Wei Dai; Tonni Agustiono Kurniawan; +1 Authors

An Assessment of Multistage Reward Function Design for Deep Reinforcement Learning-Based Microgrid Energy Management

Abstract

Reinforcement learning based energy management strategy has been an active research subject in the past few years. Different from the baseline reward function (BRF), the work proposes and investigates a multi-stage reward mechanism (MSRM) that scores the agent's step and final performance during training and returns it to the agent in real time as a reward. MSRM will also improve the agent's training through expert intervention which aims to prevent the agent from being trapped in sub-optimal strategies. The energy management performance considered by MSRM-based algorithm includes the energy balance, economic cost, and reliability. The reward function is assessed in conjunction with two deep reinforcement learning algorithms: double deep Q-learning network (DDQN) and policy gradient (PG). Upon benchmarking with BRF, the numerical simulation shows that MSRM tends to improve the convergence characteristic, reduce the explained variance, and reduce the tendency of the agent being trapped in suboptimal strategies. In addition, the methods have been assessed with MPC-based energy management strategies in terms of relative cost, self-balancing rate, and computational time. The assessment concludes that, in the given context, PG-MSRM has the best overall performance.

Accepted version

Country
United States
Related Organizations
Keywords

deep reinforcement learning, reward function, Microgrid energy management, Energy management, Costs, optimal scheduling, Training, Microgrids, Convergence, Real-time systems, Prediction algorithms

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%