Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Smart Grid
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/pesgm5...
Conference object . 2023 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Linear Recursive State Estimation of Hybrid and Unbalanced AC/DC Micro-Grids Using Synchronized Measurements

Authors: Willem Lambrichts; Mario Paolone;

Linear Recursive State Estimation of Hybrid and Unbalanced AC/DC Micro-Grids Using Synchronized Measurements

Abstract

In this paper, we present an exact (i. e. non-approximated) and linear measurement model for hybrid AC/DC microgrids for recursive state estimation (SE). More specifically, an exact linear model of a voltage source converter (VSC) is proposed. It relies on the complex VSC modulation index to relate the quantities at the converters DC side to the phasors at the AC side. The VSC model is derived from a transformer-like representation and accounts for the VSC conduction and switching losses. In the case of three-phase unbalanced grids, the measurement model is extended using the symmetrical component decomposition where each sequence individually affects the DC quantities. Synchronized measurements are provided by phasor measurement units and DC measurement units in the DC system. To make the SE more resilient to vive step changes in the grid states, an adaptive Kalman Filter that uses an approximation of the prediction-error covariance estimation method is proposed. This approximation reduces the computational speed significantly with only a limited reduction in the SE performance. The hybrid SE is validated in an EMTP-RV time-domain simulation of the CIGRE AC benchmark micro-grid that is connected to a DC grid using 4 VSCs. Bad data detection and identification using the largest normalised residual is assessed with respect to such a system. Furthermore, the proposed method is compared with a non-linear weighted least squares SE in terms of accuracy and computational time.

Country
Switzerland
Related Organizations
Keywords

Mathematical models, Covariance matrices, Loss measurement, Hybrid AC/DC grids, Voltage measurement, Computational modeling, Unbalanced networks, Microgrids, Linear state estimation, Kalman Filter, Estimation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
hybrid