Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Smart Grid
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VBN
Article . 2024
Data sources: VBN
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Distributed Event-Triggered Secondary Frequency Regulation by Sharing HESS Power in Microgrids

Authors: Wenfa Kang; Yajuan Guan; Yun Yu; Babak Arbab-Zavar; Juan C. Vasquez; Josep M. Guerrero;

Distributed Event-Triggered Secondary Frequency Regulation by Sharing HESS Power in Microgrids

Abstract

The fluctuated power output of renewable energy sources brings new challenges to frequency control, especially for islanded microgrids with small spinning reserves. However, energy storage systems and widespread flexible loads can be employed to the frequency regulation thanks to their flexibility of power outputs. This paper investigates the frequency regulation problem for islanded microgrids with distributed heterogeneous energy storage systems (HESS) composed of battery energy storage systems (BESS) and building thermal energy storage systems (BTESS). A distributed event-triggered balanced power sharing strategy considering denial of service (DoS) attacks is designed for frequency regulation by allocating HESS power according to BESS state of charge (SoC), BTESS state of temperature (SoT) and their capacities. The range of control parameters for a stable controller are all provided by Lyapunov analysis. Moreover, the frequency feedback control gain for HESS is derived by using linear quadratic regulator. Simulation results show that the proposed frequency regulation strategy can guarantee the recovery of microgrids frequency and the proportional sharing of HESS power. Besides, SoC and SoT balancing with fewer communications are achieved, even with considering various parameters of HESS, such as capacity, efficiency and with communication link failures as well as DoS attacks.

Country
Denmark
Keywords

Optimization, Energy storage, power sharing, Costs, Power systems, Frequency regulation, Frequency control, denial of service attacks, Microgrids, heterogeneous energy storage systems, Regulation, distributed event-triggered control

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average