Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Smart Grid
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY NC SA
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling Irrational Behavior of Residential End Users Using Non-Stationary Gaussian Processes

Authors: Nam Trong Dinh; Sahand Karimi-Arpanahi; Rui Yuan; S. Ali Pourmousavi; Mingyu Guo; Jon A. R. Liisberg; Julián Lemos-Vinasco;

Modeling Irrational Behavior of Residential End Users Using Non-Stationary Gaussian Processes

Abstract

Demand response (DR) plays a critical role in ensuring efficient electricity consumption and optimal use of network assets. Yet, existing DR models often overlook a crucial element, the irrational behaviour of electricity end users. In this work, we propose a price-responsive model that incorporates key aspects of end-user irrationality, specifically loss aversion, time inconsistency, and bounded rationality. To this end, we first develop a framework that uses Multiple Seasonal-Trend decomposition using Loess (MSTL) and non-stationary Gaussian processes to model the randomness in the electricity consumption by residential consumers. The impact of this model is then evaluated through a community battery storage (CBS) business model. Additionally, we apply a chance-constrained optimisation model for CBS operation that deals with the unpredictability of the end-user irrationality. Our simulations using real-world data show that the proposed DR model provides a more realistic estimate of end-user price-responsive behaviour when considering irrationality. Compared to a deterministic model that cannot fully take into account the irrational behaviour of end users, the chance-constrained CBS operation model yields an additional 19% revenue. Lastly, the business model reduces the electricity costs of solar end users by 11%.

This manuscript has been accepted for publication in IEEE Transactions on Smart Grid

Country
Australia
Related Organizations
Keywords

loss aversion, FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), time inconsistency, FOS: Electrical engineering, electronic engineering, information engineering, community battery, Irrational behaviour, bounded rationality, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
Related to Research communities
Energy Research