Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Sustainable Energy
Article . 2015 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Shuffled Frog Leaping Algorithm for Photovoltaic Model Identification

Authors: Hany M. Hasanien;

Shuffled Frog Leaping Algorithm for Photovoltaic Model Identification

Abstract

In simulation studies of photovoltaic (PV) systems with power electronic converters, the simulation results are affected by the accuracy of the PV model. The maximum power point tracking, transient and dynamic analysis of the PV systems, and operation of microgrids systems are examples of these simulation studies. The mathematical model of the PV module is a nonlinear $I-V$ characteristic that includes several unknown parameters because of the limited information provided by the PV manufacturers. This paper presents a novel approach using the shuffled frog leaping algorithm (SFLA) to determine the unknown parameters of the single diode PV model. The validity of the proposed PV model is verified by the simulation results which are performed under different environmental conditions. The simulation results are compared with the experimental results of different PV modules such as Kyocera KC200GT and Solarex MSX-60. The effectiveness of the proposed PV model is evaluated by comparing the absolute error of the model with respect to the experimental results with that of other PV models. With the application of the SFLA technology, an accurate PV model can be achieved.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    147
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
147
Top 1%
Top 10%
Top 1%