
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Real-Time HIL Implementation of Sliding Mode Control for Standalone System Based on PV Array Without Using Dumpload

In this paper, hardware-in-the-loop (HIL) implementation of solar photovoltaic (PV) array feeding autonomous load, without dump load, is investigated. Two control algorithms based on the sliding mode approach are designed to guarantee a fast and finite-time convergence without adjustment of the system parameters. The dc-dc boost converter and the current controlled-voltage source converter (CC-VSC) are controlled to maximize the power from the PV, to protect the battery energy storage system (BESS) from overcharging, and to regulate the voltage and frequency at the point of common coupling (PCC). An accurate stability analysis of the system is presented and discussed in this work. The effectiveness and the robustness of the developed controllers are validated by simulation and experimental results during the load perturbation and varying climate conditions.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).70 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
