
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Maximum Power Point Tracking of a Wind Power Plant With Predictive Gradient Ascent Method

In this paper, we present maximum power point tracking for a wind power plant (WPP) using the gradient ascent (GA) in a data-driven manner. The conventional GA method achieves fast convergent performance by considering only direct wake terms when calculating the axial induction factors. However, the conventional method might not be close to optimal even when the wind conditions are steady state. In this paper, we propose a new method using the relationships between the direct and indirect wake terms. Using the relationship between the wake terms can prevent sudden deviations after convergence to a single operating point, even when significant indirect wake terms exist in the presence of multiple wakes. Therefore, the proposed method provides not only fast convergence to an operating point, but also closer-to-optimal power production without sudden deviations compared to the conventional method. We validated the effectiveness of the proposed method using modeled WPP layouts with various wind conditions.
- Hanyang University Korea (Republic of)
- Hanyang University Korea (Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
