Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Transactions on Sustainable Energy
Article
License: publisher-specific, author manuscript
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Sustainable Energy
Article . 2017 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Artificial Neural Network for Control and Grid Integration of Residential Solar Photovoltaic Systems

Authors: Shuhui Li; Malek Ramezani; Bo Lin; Yang Sun; Xingang Fu; Ishan Jaithwa;

Artificial Neural Network for Control and Grid Integration of Residential Solar Photovoltaic Systems

Abstract

Residential solar photovoltaic (PV) energy is becoming an increasingly important part of the world's renewable energy. A residential solar PV array is usually connected to the distribution grid through a single-phase inverter. Control of the single-phase PV system should maximize the power output from the PV array while ensuring overall system performance, safety, reliability, and controllability for interface with the electricity grid. This paper has two main objectives. The first objective is to develop an artificial neural network (ANN) vector control strategy for an LCL -filter based single-phase solar inverter. The ANN controller is trained to implement optimal control, based on approximate dynamic programming. The second objective is to evaluate the performance of the ANN-based solar PV system by simulating the PV system behavior for grid integration and maximum power extraction from solar PV array in a realistic residential PV application and building an experimental solar PV system for hardware validation. The results demonstrate that a residential PV system using the ANN control outperforms the PV system using the conventional standard vector control method and proportional resonant control method in both simulation and hardware implementation. This is also true in the presence of noise, disturbance, distortion, and nonideal conditions.

Powered by OpenAIRE graph
Found an issue? Give us feedback