Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Sustainable Energy
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Frequency Support From Wind Turbine Generators With a Time-Variable Droop Characteristic

Authors: Mehdi Garmroodi; Gregor Verbic; David J. Hill;

Frequency Support From Wind Turbine Generators With a Time-Variable Droop Characteristic

Abstract

The changing inertia profile caused by the increased penetration of inertialess renewable energy sources has raised concerns about power system frequency control. The kinetic energy of the turbines in wind turbine generators (WTGs) can be utilized to support power system frequency during contingencies. In this paper, we investigate the frequency support capability of WTGs operating at the maximum power point (MPP). The requirements to prevent secondary frequency dips, provoked from switching between normal operating mode and the frequency support mode, are formulated. A time-variable droop characteristic is proposed for frequency support from WTGs, which is quite effective in preventing large frequency excursions and facilitates smooth recovery of the kinetic energy of WTGs. The performance of the proposed method is examined in different operating conditions of WTGs in a single bus model of power systems, as well as a regional 14-generator model of the Australian National Electricity Market. The results show that with the time-variable droop characteristic, the frequency nadir following a contingency can be largely improved and simultaneously, the WTGs can smoothly regain their kinetic energy and continue operating at the MPP.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    83
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
83
Top 1%
Top 10%
Top 1%