
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Wireless Power Transfer for Distributed Energy Sources Exploitation in DC Microgrids

This paper investigates the wireless power transfer (WPT) system incorporation into dc microgrids applications. Emphasis is given on the mathematical analysis of the series–series (SS) WPT system for constant voltage source loading conditions that cannot be effectively described by the equivalent constant resistance model. For this reason, the complete harmonic analysis is considered in this paper in order to study the real operational characteristics of SS-WPT systems that interface to a dc bus. The proposed system interconnects a dc bus with various distributed energy sources, while the ability of constant power generation behavior of the proposed system is revealed and examined for various SS-WPT system parameters’ values, highlighting its advantageous characteristics for distributed energy exploitation. Additionally, the incorporation of the SS-WPT system in distributed energy sources exploitation offers reduced wiring complexity and installation flexibility. Experimental and simulation results are presented, validating the theoretical analysis.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
