
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Short-Term Voltage Stability Enhancement in Residential Grid With High Penetration of Rooftop PV Units

handle: 10072/385620
Short-term voltage instability (STVI) imposes a severe threat to modern distribution networks (DNs) where a large number of intermittent distributed generator (DG) units, like rooftop photovoltaic (PV), is being integrated. Consequently, most of the international standards have been revised by incorporating the requirement of the dynamic voltage support (DVS) through DG units, which is a promising approach to alleviate the STVI. In this paper, a novel DVS strategy is proposed to improve the short-term voltage stability (STVS) in residential grids. In comparison with other DVS strategies, the proposed DVS scheme maximizes the active power support from PV units following a contingency utilizing the maximum allowable current of the PV inverters. Moreover, the inverter design margin is taken into account in designing the proposed scheme to limit the injected grid current within the maximum allowable inverter current. The impact of the inverter design margin on the STVS is explained, and the effectiveness of the proposed strategy compared with the conventional DVS is demonstrated. The feasibility of the DVS control strategies in practical application is studied. Several case studies are carried out on benchmark IEEE 4 bus and IEEE 13 node test feeder systems, and finally, on a ring-type DN. The results show that the proposed DVS scheme is feasible, and achieved superior performance compared to the other strategies. Furthermore, it has been shown that implementation of the proposed DVS scheme can avoid the installation of an expensive 1200-kVA D-STATCOM for STVS improvement in the target system.
- University of Queensland Australia
- Griffith University Australia
- University of Queensland Australia
- University of Queensland Australia
- Macquarie University Australia
Stability criteria, Automatic voltage control, Distributed generators, Dynamic voltage support, Sustainability and the Environment, Low voltage ride-through, Reactive power, Other engineering, Inverters, Power system stability, Generators, 2105 Renewable Energy, Fault induced delayed voltage recovery, Distribution system, Electrical engineering, Electronics, sensors and digital hardware, Short-term voltage stability
Stability criteria, Automatic voltage control, Distributed generators, Dynamic voltage support, Sustainability and the Environment, Low voltage ride-through, Reactive power, Other engineering, Inverters, Power system stability, Generators, 2105 Renewable Energy, Fault induced delayed voltage recovery, Distribution system, Electrical engineering, Electronics, sensors and digital hardware, Short-term voltage stability
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).32 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
