Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Sustainable Energy
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-Timescale Voltage Stability-Constrained Volt/VAR Optimization With Battery Storage System in Distribution Grids

Authors: Raheel Zafar; Jayashri Ravishankar; John E. Fletcher; Hemanshu R. Pota;

Multi-Timescale Voltage Stability-Constrained Volt/VAR Optimization With Battery Storage System in Distribution Grids

Abstract

This paper proposes multi-timescale voltage stability-constrained volt/VAR optimization to improve the steady-state stability and security of smart distribution grids. It aims to coordinate the post-contingency slow-timescale corrective actions provided by an on-load tap changer with fast-timescale corrective actions provided by photovoltaic inverters and battery energy storage system. This multi-timescale operation exploits the difference between short- and long-term emergency ratings of line flows and voltage magnitudes usually defined by utilities for contingency cases. Global optimum is achieved by formulating the problem as mixed-integer second-order cone program. To justify the investment in battery storage, the proper coordination between base case state-of-charge and storage dynamic reserve margin required for post-contingency corrective actions is performed. Also, the steady-state voltage stability margin is computed through detailed voltage stability analysis. Simulation results demonstrate the effectiveness of the proposed multi-timescale corrective actions in maintaining the steady-state stability and security under contingency cases.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%