
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An Adaptive Wind-Driven Optimization Algorithm for Extracting the Parameters of a Single-Diode PV Cell Model

handle: 10072/395394
This paper presents a new methodology to extract the unknown parameters of a single-diode photovoltaic (PV) cell model. The first contribution of this paper is the development and implementation of a new version of the wind-driven optimization algorithm, called an adaptive wind-driven optimization (AWDO) algorithm. The advantages of the AWDO algorithm are: 1) accurate extraction of the global values of the optimized PV parameters in changing weather conditions, which is achieved by building solutions from random operations; and 2) capability of handling the given complex multi-modal and multi-dimensional optimization problems. The second contribution is the identification of a generalization model to generalize the extracted parameters of a single-diode PV cell model. That provides an ability of the proposed methodology to work with any I–V characteristic curve of PV cells and at any weather condition on a 15-min basis. To validate the proposed methodology, it has been tested for 1307 I–V characteristic curves of a PV module at various weather conditions on a 15-min basis. Additionally, its accuracy and computational efficiency are verified and compared with five well-known existing extraction methods: Villalva's model, particle swarm optimization, biogeography-based optimization, Gang's model, and bacterial foraging optimization by both simulation and outdoor measurements. The results show that the AWDO algorithm can provide the extracted five parameters with an acceptable range of accuracy and faster than the aforementioned models. Therefore, the proposed methodology (AWDO based on Chenlo's model) can be confidently recommended as a reliable, feasible, valuable, and fast optimization algorithm for parameter extraction of a single-diode PV cell model.
- Griffith University Australia
- Macquarie University Australia
- Griffith University Australia
- Commonwealth Scientific and Industrial Research Organisation Australia
- Macquarie University Australia
Science & Technology, Energy & Fuels, Electrical engineering, Other engineering, Green & Sustainable Science & Technology
Science & Technology, Energy & Fuels, Electrical engineering, Other engineering, Green & Sustainable Science & Technology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).62 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
