Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UNSWorksarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Sustainable Energy
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VBN
Article . 2020
Data sources: VBN
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal Voltage Regulator for Inverter Interfaced Distributed Generation Units Part І: Control System

Authors: Mohsen Eskandari; Li Li; Mohammad Hassan Moradi; Pierluigi Siano; Frede Blaabjerg;

Optimal Voltage Regulator for Inverter Interfaced Distributed Generation Units Part І: Control System

Abstract

The stable operation of conventional power systems greatly depends on coherent impedances of the bulk power networks' elements. However, penetration of inverter interfaced distributed generation (IIDG) units put the stability of modern power systems into a risk due the vague and arbitrary output impedance of IIDG units. Besides, the impedance specification of IIDGs can only be established by means of a virtual impedance loop, which needs extra control efforts also imposes voltage drops. Especially, the virtual impedance depends on the output current and cannot be thus freely adjusted. To this end, an optimal voltage regulator (OVR) is proposed for controlling IIDG units to achieve a free/wide range of impedance shaping. The OVR facilitates the optimal impedance shaping based on the control requirement and grid's impedance characteristics, which makes the IIDG units consistent with the power network thus contributing to stabilizing modern power systems. The OVR's control system is based on the state feedback control and the impedance shaping is achieved through an appropriate feedback gain adjustment process. Simulation results prove the effectiveness of the method to achieve the desired impedance shaping.

Countries
Australia, Denmark, Italy
Keywords

anzsrc-for: 4009 Electronics, 621, 620, anzsrc-for: 40 Engineering, inverter interfaced distribution generation (IIDG), optimal control, 4009 Electronics, state feedback control, anzsrc-for: 0915 Interdisciplinary Engineering, Impedance shaping; inverter interfaced distributed generation (IIDG); microgrid (MG); optimal control; state feedback control, impedance shaping, 4008 Electrical Engineering, Sensors and Digital Hardware, anzsrc-for: 4008 Electrical Engineering, anzsrc-for: 0906 Electrical and Electronic Engineering, migrogrid (MG), 40 Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%
Green