Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The University of Ma...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Sustainable Energy
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Sea-State-Dependent Control Strategy for Wave Energy Converters: Power Limiting in Large Wave Conditions and Energy Maximising in Moderate Wave Conditions

Authors: Zhijing Liao; Xiaotao Zhang; Judith Apsley; Matteo F. Iacchetti; Peter Stansby; Guang Li;

A Sea-State-Dependent Control Strategy for Wave Energy Converters: Power Limiting in Large Wave Conditions and Energy Maximising in Moderate Wave Conditions

Abstract

Conventional control strategies for wave energy converters (WECs) maximise power capture of the WEC by amplifying its responses, but this exacerbates hardware constraint violations not generally taken into account, causing undesirable shutdown of electrical systems in adverse wave conditions. When WECs operate close to power take-off (PTO) capacity, the primary control objective is to limit peak power for hardware protection purposes, enabling longer continuous electricity generation time. In this paper, we propose a sea-state-dependent control strategy based on model predictive control to maximise the annual energy production of a WEC with a realistic PTO: in small to moderate sea states it adopts a conventional energy-maximising objective function to increase output power, while in higher sea states a speed-limiting objective function may be utilised to enable longer generating time before shutdown becomes necessary. While this control strategy applies to a wide range of WECs, here we carry out the case study on an attenuator WEC called M4, with gearbox transmission and a permanent magnet synchronous generator (PMSG) as its PTO, which is being designed for a 1/4 scale ocean test in Albany, Australia. Simulation results show that compared with a benchmark passive damping controller, a 66% increase in annual energy production can be expected at the targeted site.

Country
United Kingdom
Related Organizations
Keywords

Mathematical models, model predictive control, Sea state, power limiting control, Wave energy conversion, Hardware, Torque, Electronic ballasts, Wave energy converter, Force, wave-to-wire model

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green