
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Coordinated Dynamic Pricing Model for Electric Vehicle Charging Stations

The charging loads of plug-in electric vehicles (PEVs) within a network of charging stations (CSs) are not uniformly distributed. The load distribution is skewed toward the stations located in the hotspot areas, instigating longer queues and waiting times, particularly during afternoon peak traffic hours. This can lead to a major challenge for the utilities in the form of an extended PEV load period, which could overlap with the residential evening peak load hours, increase peak demand, and cause serious issues, such as network instability and power outages. This paper presents a new coordinated dynamic pricing model to reduce the overlaps between residential and CS loads by inspiring the temporal PEV load shifting during evening peak load hours. The new idea is to dynamically adjust the price incentives to drift PEVs toward less popular/underutilized CSs. We formulate a constraint optimization problem and introduce a heuristic solution to minimize the overlap between the PEV and residential peak load periods. Our extensive simulation results indicate that the proposed model significantly reduces the overlap and the PEV load during evening peak hours.
- Edith Cowan University Australia
- Edith Cowan University Australia
- Utah Valley University United States
- Utah Valley University United States
Charging station (CS), pricing model, [RSTDPub], electric vehicle, 620, Engineering
Charging station (CS), pricing model, [RSTDPub], electric vehicle, 620, Engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).103 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
