
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Novel Consistency Evaluation Method for Series-Connected Battery Systems Based on Real-World Operation Data

Unmanaged cell inconsistency may cause accelerated battery degradation or even thermal runaway accidents in electric vehicles (EVs). Accurate cell inconsistency evaluation is a prerequisite for efficient battery health management to maintain safe and reliable operation and is also vital for battery second-life utilization. This article presents a cell inconsistency evaluation model for series-connected battery systems based on real-world EV operation data. The open-circuit voltage (OCV), internal resistance, and charging voltage curve are extracted as consistency indicators (CIs) from a large volume of electric taxis’ operation data. The Thevenin equivalent circuit model is adopted to delineate battery dynamics, and an adaptive forgetting factor recursive least-squares method is proposed to reduce the fluctuation phenomenon in model parameter identification. With a modified robust regression method, the evolution characteristics of the three CIs are analyzed. The Mahalanobis distance in combination with the density-based spatial clustering of applications with noise is employed to comprehensively evaluate the multiparameter inconsistency state of a battery system based on the CIs. The results show that the proposed method can effectively assess cell inconsistency with high robustness and is competent for real-world applications.
- Beijing Institute of Technology China (People's Republic of)
- Beijing Institute of Technology China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).139 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
