
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Advanced Fault-Tolerant Control of Induction-Motor Drives for EV/HEV Traction Applications: From Conventional to Modern and Intelligent Control Techniques

This paper describes active fault-tolerant control systems for a high-performance induction-motor drive that propels an electrical vehicle (EV) or a hybrid one (HEV). The proposed systems adaptively reorganize themselves in the event of sensor loss or sensor recovery to sustain the best control performance, given the complement of remaining sensors. Moreover, the developed systems take into account the controller-transition smoothness, in terms of speed and torque transients. The two proposed fault-tolerant control strategies have been simulated on a 4-kW induction-motor drive, and speed and torque responses have been carried to evaluate the consistency and the performance of the proposed approaches. Simulation results, in terms of speed and torque responses, show the global effectiveness of the proposed approaches, particularly the one based on modern and intelligent control techniques in terms of speed and torque smoothness
[SPI.NRJ]Engineering Sciences [physics]/Electric power, Automotive application, fault-tolerant control, [SPI.NRJ] Engineering Sciences/Electric power, 629, induction-motor drive, [SPI.NRJ] Engineering Sciences [physics]/Electric power
[SPI.NRJ]Engineering Sciences [physics]/Electric power, Automotive application, fault-tolerant control, [SPI.NRJ] Engineering Sciences/Electric power, 629, induction-motor drive, [SPI.NRJ] Engineering Sciences [physics]/Electric power
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).152 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
