
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Energy-Efficient Coordinated Multipoint Scheduling in Green Cloud Radio Access Network

The fast development of mobile computing has raised ever-increasing diverse communication needs in wireless networks. To catch up with such needs, cloud radio access networks (CRAN) is proposed to enable efficient radio resource sharing and management. At the same time, the massive deployment of radio access networks has caused huge energy consumption. Incorporating renewable green energy to lower the brown energy consumption also has become a widely concerned topic. In this paper, we are motivated to investigate a green energy aware remote radio head activation problem for coordinated multipoint communications in green energy powered CRAN, aiming at minimizing the network brown energy power consumption. The problem is first formulated into a nonconvex optimization form. By analyzing the characteristics of the formulation, we further propose a heuristic algorithm based on an ordered selection method. Extensive simulation based experiment results show that the proposed green energy aware algorithm provides an effective way to reduce brown energy power consumption, well fitting the goal of developing green communications.
- Hong Kong Polytechnic University China (People's Republic of)
- Huazhong University of Science and Technology China (People's Republic of)
- China University of Geosciences China (People's Republic of)
- Hong Kong University of Science and Technology (香港科技大學) China (People's Republic of)
- China University of Geosciences China (People's Republic of)
Cloud radio access networks, Energy efficiency, Green energy, 600, Convex optimization
Cloud radio access networks, Energy efficiency, Green energy, 600, Convex optimization
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
