Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Vehicular Technology
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Set-Valued Sensor Fault Diagnosis Method for Lithium-Ion Battery Packs in Electric Vehicles

Authors: Yiming Xu; Xiaohua Ge; Weixiang Shen;

A Novel Set-Valued Sensor Fault Diagnosis Method for Lithium-Ion Battery Packs in Electric Vehicles

Abstract

Sensor fault diagnosis is of great significance to ensure safe battery operation. This paper proposes a novel sensor fault diagnosis method that achieves the simultaneous fault detection, fault source and type identification, and fault estimation in a comprehensive way. Specifically, a set-valued observer, featuring a state predictor and a state estimator, is first constructed and designed to guarantee the inclusion of the unavailable actual battery state due to unknown modeling errors and noises at every instant of time. Compared with the traditional observers, a distinct feature of the proposed one lies in that the calculated state predictions and estimations of the battery system at each time step are ellipsoidal sets in state space rather than single vectors. The boundedness of state prediction and estimation errors is formally proved, and the tractable design criteria for determining the real-time optimal prediction and estimation ellipsoids are also derived. As for diagnosis algorithm, fault detection is implemented based on the intersection between the prediction and estimation ellipsoids. Then, a two-layer Pearson correlation coefficient analysis mechanism is developed to identify the source and type of sensor faults. Another set-valued observer based on an augmented battery model is further designed to estimate the fault level. Finally, experimental studies of a battery cell under different sensor fault sources, types and values are elaborated to verify the effectiveness of the proposed method.

Country
Australia
Keywords

006

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Related to Research communities
Energy Research