Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/upec.2...
Conference object . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Risk evaluation and creep in conventional conductors caused by high temperature operation

Authors: MASSARO, Fabio; DUSONCHET, Luigi;

Risk evaluation and creep in conventional conductors caused by high temperature operation

Abstract

The advent of electricity market deregulation, the increased operating and overload temperatures of transmission line conductors have caused concern among TSOs (Transmission System Operators) and DSOs (Distribution System Operators) about the effect of elevated temperatures on conventional bare conductors of existing line. Nowadays building new lines is very difficult cause of increased costs to obtain rights of way, public intervention, etc.... Cost and lead times required to place new lines into service are now increased and the business in electric market is reduced for the limited possibility of transmission. Therefore, utilities are attempting to gain as much capacity as possible modifying operation on existing lines. In the past, utilities have been conservative in rating their lines; today the uncertainties in parameters which influence conductor temperature, with a better understanding of environmental conditions and improvements in monitoring instruments and sophisticated analysis tools, utilities are rating lines at higher temperatures with higher level of confidence than in the past. In this paper will be discussed the effects of high temperature plastic creep elongation on the sags and tensions for a conventional conductor. Using equations developed by IEEE Std. the predicted creep for a conductor under high temperature operation can be calculated. The aim of this paper is to provide general recommendations to maintain adequate ground clearance for the safe operation of a line; itpsilas possible to operate at a higher temperature if the associated negative effects are adequately understood, considered and managed.

Country
Italy
Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average